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Abstnct-This paper presents a boundary element formulation and numerical implementation of the
problem of small axisymmetric deformation of viscoplastic bodies, While the extension from planar to
axisymmetric problems can be carried out fairly simply for the finite element method (FEM), this is far
from true for the boundary element method (BEM). The primary reason for this fact is that the
axisymmetric kernels in the integral equations of the BEM contain elliptic functions which cannot be
integrated analytically even over boundary elements and internal cells of simple shape, Thus, special
methods have to be developed for the efficient and accurate numerical integration of these singular and
sensitive kernels over discrete elements. The accurate determination of stress rates by differentiation of the
displacement rates presents another formidable challenge.

A successful numerical implementation of the boundary element method with elementwise (called the
Mixed approach) or pointwise (called the pure BEM or BEM approach) determination of stress rates has
been carried out. A computer program has been developed for the solution of general axisymmetric
viscoplasticity problems, Comparisons of numerical results from the BEM and FEM, for several illustrative
problems, are presented and discussed in the paper. It is possible to get direct solutions for the simpler class
of problems for cylinders of uniform cross-section, and these solutions are also compared with the BEM
and FEM results for such cases,

INTRODUCTION
The subject of this paper is the solution of boundary value problems for axisymmetric
viscoplastic bodies subjected to axisymmetric mechanical loads. The boundary element method
(BEM) is used to solve this class of problems.

Mukherjee and his coauthors have previously solved a number of viscoplasticity problems
by the BEM. These include planar[l-4], plate bending[5], and torsion[6] problems. In most of
these cases, numerical solutions to the governing integral equations have been obtained by
integrating the singular kernels of the equations analytically over boundary elements and
internal cells of simple shape. While the extension for planar to axisymmetric problems is
carried out fairly simply in the finite element method (FEM), this is far from true for the
boundary element method. The primary reason for the need of considerable effort for the
BEM solution is the fact that the axisymmetric kernels contain elliptic functions which cannot
be integrated analytically even over boundary elements and internal cells of simple shape. Thus,
suitable methods must be developed for the efficient and accurate numerical integration of these
singular and sensitive kernels over discrete elements. This aspect of the problem makes the
axisymmetric case more difficult to solve than the planar problems that have been solved
earlier. An important bonus of the development of accurate numerical integration techniques
for singular kernels, of course, is that these ideas can then be used in other problems where
analytical integration is impossible or impractical because of the need for complicated shapes of
boundary elements or internal cells, or for other reasons.

The axisymmetric elasticity problem has been solved previously by the BEM and related
methods by Kermanidis [7], Cruse et al. [8] and Shippy et al. [9]. A first solution for axisym­
metric elastic-plastic problems has been presented by Cathie and Banerjee [10]. A BEM
formulation for axisymmetric viscoplasticity problems requires, as for other viscoplasticity
problems, evaluation of domain integrals. If a constitutive model for material behavior is
chosen from a certain class of such models (e.g. pure creep or combined creep-plasticity
constitutive equations), these integrals involve known integrands over the domain of the body
and the unknowns of the body lie only on the boundary. The evaluation of these domain
integrals for the displacement rate equations require special care, and the problem is more
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complicated if the strain rates are evaluated by pointwise differentiation of displacement rates
at a source point.

A HEM formulation and numerical implementation of the method for axisymmetric vis­
coplasticity problems is presented in this paper. Careful attention is paid to the accurate
evaluation of integrals of singular kernels over discrete elements. The stress rates are obtained
either by pointwise analytical differentiation of the displacement rates (the pure HEM method)
or by elementwise numerical differentiation of these displacement rates (the Mixed method).
Numerical results are obtained for several illustrative problems and the HEM, Mixed, FEM and
direct solutions are compared for various cases.

GOVERNING EQUATIONS

The integral equations for the axisymmetric problem are derived from the corresponding
three-dimensional equations. A few relevant three-dimensional equations are given first.

Three-dimensional equations
The starting point is the Navier equations for the displacement rates. Using decomposition

of strain rates iij into elastic i~j) and nonelastic iIi) ones in the form

results in the equation[l] (i, i = 1,3)

. +_1_. -2'(e)
U~jj 1_ 2" Uk.ki - E ij,j'

(1)

(2)

In the above, Uj are the components of displacement rates and II is the Poisson's ratio.
Thermal strains and body forces are ignored in this paper. The boundary conditions must
prescribe displacement and traction rates on the boundary of the body in the usual way.

A boundary element formulation for displacement rates can be written as (i, i, k = 1,3)

Uj(p) =1[Uij(P, Q)+j(Q) - 1ij(p, Q)Uj(Q)] dSQ
iJB

+12Glf;j(P, Q)i~~)(Q)nk(Q) dSQ -1 2GU/j(P, q)il~~(q) dVq
iJB B

(3)

in terms of the usual three-dimensional kernels If;j and Tjj[ll]. In the above, p (or P) is a source
point and q (or Q) is a field point (with capital letters denoting points on the boundary aB and lower
case letters denoting points inside the body B), G is the shear modulus, 'Tj are the components
of the traction vector and nk are the components of the unit outward normal to aB at a point on
it. Also, dSQ and dVq are surface volume elements, respectively.

By applying the divergence theorem, the last two terms of eqn (3) can be combined to yield
the single term

which contains the nonelastic strain rate components rather than their derivatives. The kernel in
this term, however, has a singularity of the type I/r (in terms of the distance r between the
source and field points) instead of 1/r in If;, Equation (3) with the last two terms replaced by
the above term, is caUed eqn (3a).

The stress rates are obtained from the strain rates through Hooke's law and eqn (I). Several
strategies can be used for the determination of strain rates from displacement rates. One is the
elementwise numerical differentiation of the Uj by interpolation of the displacement rates over
internal cells using suitable shape functions. Another is the pointwise analytical differentiation
of displacement rates at an internal source point. Thus, eqn (3) can be differentiated at a source
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point to give (i, i, Ie, L = 1,3; L denoting differentiation with respect to an internal source point)

uJ.dp) =1[UIJ,dp, Q)"j(Q) - 1iJ.dp, Q)Uj( Q» dSQ
~B

+12GUiJ,L(P, Q)i~l(Q)nk(Q) dSQ
dB

-fa 2GUiJ.dp, q)i~k(q) dvq• (4)

This method has been used to determine displacement rate gradients later in this paper. It is
very important to realize that if the alternative eqn (3a) for UI with the term involving l!;J.k is
used (as is commonly done), one must be very careful when differentiating the term
f B 2GUiJ.ki~k) dv. This is because UiJ.k is strongly singular (singularity of 1/r in 3D). One
possibility is to evaluate the volume integral analytically for an arbitrary point P and then
differentiate this integral at p. This usually requires interpolation of the nonelastic strain rates
over a volume element and analytical integration of the kernal Uik,k over that element. This has
been done successfully for planar problems [2-4]. Another alternative is to carry out convected
differentiation of the integral over the region B - B,,(p) (where B,,(p) is a sphere or radius '1'/
centered at p) as suggested by Bui[l2]. This method gives the proper residual term in the
expression for the strain rate. It still leaves the problem, however, of numerically dealing with a
kernel which behaves like 1/,J near a source point, in case the kernel cannot be integrated
analytically. Equation (4), on the other hand, has a kernel with a strongest singularity of 1/r,
and can be directly implemented numerically in a computer program: It does, however, have the
gradient of i~,!), rather than the strain rate components themselves, in the volume integral.

Axisymmetric equations
An axisymmetric body with axisymmetric loading is considered in this paper. Using polar

coordinates R, () and Z, the nonzero components of displacements, stresses and strains are UR,

Uz, ERR' E69> EzZ' ERZ (= EZR), URR, CT69> CTZZ and CTRZ (= CTZR). All dependent variables are
functions of R, Z and t. Some torsion problems can be independent of 8, but these are not
included in this formulation.

A boundary element formulation for displacement rates, for the axisymmetric problem, can
be based on eqn (3) or on its alternate version (3a) in which the last two terms are combined
together to a single volume integral. The idea is to reduce the three-dimensional equations
effectively to two-dimensional ones on a generator plane of the axisymmetric body.

The coordinate system used is shown in Fig. I. The source point is denoted by (R, 0, Z) and

Source Coords (R, O. Z )
Field Coords (p •8. (. )

r2:p2+R2+f+z2-2Rpcos8 - 2Z(.

Fig, l. Geometry of the axisymmetric problem.
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(5)

the field point by (p, 8, t"). Since the problem is axisymmetric, it is sufficient to choose the
source point in the XI - X3 plane. The source point coordinates are denoted here by capital
letters. It can, of course, lie inside or on the surface of the body.

The HEM formulation given below is based on eqn (3a). An axisymmetric version of the
three-dimensional equations can be obtained by integrating the kernels U;j, ~p etc. for the field
point moving around a ring with the source point fixed. This can also be done by formulating a
singular body force representation of the ring loads in a direct fashion (see Cruse [8]). The first
approach is used here (see Ref. [7] for related work using fictitious loads).

Integrating eqn (3a) for the field point coordinate (J between 0 and 211' results in the equation
(j = I and 3, no sum over p or t"):

Uj(P) =1(Upj(P, Q)ip (Q) + Ufj(p, Q)T€(Q)
~B

- Tpj(p, Q)up(Q) - Tfj(p, Q)u€(Q»PQ dCQ

+2G fB (Upj,ip, q)i;,';;(q) + Upj.€(P, q)i~(q)

+ Ufj.p(P, q)i<;,l(q) + Ufj.€(P, q)iW(q)

+Upi(p, q)EW(q»)" dll d~
Pq "q"q q

where, because ofaxisymmetry, UR(P)=UI(P), uz(P)=uJ(P), and dc=V(dp2+de2) is an
element on the boundary of the p - t" plane. The boundary iJB in this paper is that of a R - Z
plane and the domain B is a R - Z section of the axisymmetric solid. Thus, only line integrals
and area integrals must be evaluated in eqn (5). This reduces the three-dimensional problem to a
two-dimensional one.

The kernels Up" etc. are given by the equations[8]

Upl(p, q) = 1611'(/- ,,)G V(~P) ((2(3 -4,,)-y+ (Z~fl) K(k)

- (2(3-4,,)(1 + 1)+(~) (Z~€»)E(k»)

U€I(P, q) =1611'(1 ~€")~:V(Rp) (RK(k) +(p1-.!..Y) E(k»)

_ (Z - t")k ( (py- R) )
Up3(p, q) - 161TG(I- v)RpV(Rp) pK(k) (1 -I) E(k)

U€3(P, q) = 811'(1 ~ v)G V(~pl(3-4,,)K(k) +21~(~~21)E(k»)

(6)

(7)

(8)

(9)

where K(k) and E(k) are complete elliptic integrals of the first and second kind respectively
and k = V[2/(I + 1)]. Further,

The traction kernels are given in terms of derivatives of Upp etc. by the equations (j = I and
3)

I T. ( Q (( I-")~ "(1 !!:!IL)) I(~!!:!IL)2G pj P, ) = 1-2" iJp + (1- 2,,) pUpj + iJt" lip +2 iJt" + iJp n€ (10)

(11)

where np and II€ are the components of the outward unit normal at the field point on the
boundary in the p and t" directions.
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The derivatives of the displacement kernels which occur in the above equations as well as in
the area integral of eqn (5) are given in Ref. (13).

The boundary integral equation when the source point P becomes a point P on the boundary
aB of the body is (j =1 and 3, no sum over p or ~

CjJ(P)U;(P) = ( (UpJ(P, Q)fp(Q) + Uu(P, Q)fl(Q)
Jas
- TpJ(P, Q)up(Q) - Tu(P, Q)u(Q»PQ dCQ

+20fa(Upj.p(P, q)i::?(q) + UpJiP, q)il.'El(q)

+ Uu,p(P, q)i~)(q) +UuiP, q)iW(q)

+ Uei(P, q)iW(q»)p d dot
Pq q Pq \'q' (12)

(13)

The components of CjJ depend, as usual, on the geometry of the boundary at P. these
components are determined indirectly and the details of this approach are discussed in a
subsequent section called "Numerical Implementation".

Internal stress rates
As discussed before, the stress rates at internal points must be determined from the

displacement rate gradients through Hooke's Law and eqn (1). One approach is to interpolate
the displacement rates within each internal cell by suitable shape functions and then differen­
tiate these shape functions elementwise to obtain the strain rates. This strategy, therefore, uses
the boundary element method to determine displacement rates throughout the body and then a
method analogous to finite elements to obtain strain rates. It will henceforth be called the mixed
method. It has been used by Cathie and·Banerjee [10] to solve axisymmetric plasticity problems.
This method can be implemented in a simple manner but has the disadvantage of allowing
discontinuities in stress rates at internal nodes and across inter-eell boundaries,

The other approach is pointwise analytical differentiation of the displacement rates at an
internal source point. As mentioned before, eqn (5), which is based on eqn (3a), is not a
convenient starting point fOJ: the determination of strain rates. This is because eqn (5) contains
kernels like Upj,p, which have singularities of the type 1/r in a two-dimensional (area) integral. It
is more convenient to start, instead, from an axisymmetric version of eqn (3). This axisym­
metric equation contains kernels like Upj in the area integral which have weaker logarithmic
singularities, Thus, there is no problem with direct differentiation of this equation at a source
point. This approach is called the "strain rate gradient method" since the area integral in this
case contains gradients of nonelastic strain rates (see eqn 4). This gives the equation

Uj.L(P) = ( (Upj.L(P, Q)fp(Q) + UU,L(P, Q)fl(Q)Jas
- Tpj,L(P, Q)uP(Q) - TU,L(P, Q)ul (Q»PQ dCQ

+20 ( (Up/.L(P, Q)(i~::'>(Q)np(Q) + i~(Q)nl(Q»
Jas

+ Uu,dp, Q)(i~)(Q)np ( Q) + iW(Q)nl(Q)))PQ dCQ

- 20fs (Upj,L(P, q)(i~iq)+ i~(q)~ iW(q) +i~~q»)

+ UU,L(P, q)( i~~p(q)+ i~~q) + i~~!~q») )pq dpq d~q

where j =1 and 3, L =1 and 3 and there is no summation over P or ~. Differentiation with
respect to a capital letter denotes a source point derivative. By virtue ofaxisymmetry (see Fig.
1),

UZ,R = U3,1' Uz.z = U3,3'
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This method requires accurate values of i~i) on the boundary aB, and these can be obtained
from the boundary stresses. The boundary stresses can be determined accurately by using the
approach discussed in the next section. Equation (13) has the drawback of requiring the
divergence of the nonelastic strain rates over the domain of B. Numerical realization of these
nonelastic strain rate derivatives requires piecewise interpolation of nonelastic strain rates over
internal cells. This might be less accurate than direct evaluation of i~j) at internal Gauss points.

It should be noted that kernels in the boundary integrals of stress rate equations never
become singular if a source point lies inside the body B.

Numerical results based on eqns (5), (12) and (13) are called BEM results later in this paper.
Those based on (5), (12) and elementwise differentiation of displacement rates are referred to as
being obtained from the Mixed method.

Boundary stress rates
It is very difficult to determine strain rates at a boundary point by taking the limit as p -. P

in eqn (13). These are best determined from a boundary algorithm which has been presented
earlier for elasticity problems in cartesian coordinates by Rizzo and Shippy[14]. The method
outlined below is analogous to that in Ref. [14].

The boundary integral equation is solved at a given time so that the rates of displacements
and tractions are known over the entire boundary. In this discussion, piecewise straight
boundary elements are considered on the boundary aB. The normal and tangential components
of the traction rate vector are first calculated at some point P on aB. (P is assumed to lie at a
point on aB where it is locally smooth.) Now

where eTIIII and eTne are the normal and shearing components of the stress rates at P. As usual,
the anticlockwise distance along the boundary element at P is denoted by c (see Fig. 1). Next,
the normal and tangential components of the displacement rate vector are calculated at P and
the tangential derivative of Ue, aUel ac, is obtained at P by numerical differentiation along the
boundary element. The constitutive equations are written as

aUe _. _ 1[ . ( . .)] '(11)iiC- Eee -E Uee - P UIIII +U" +Eee

UR _. _.!.[. - (. .)] '(11)
R-EH-Eu66 puIIII+uee +E".

(14)

(15)

The nonelastic strain rates i<;ll, i~"J, i!p1 and i<;1 are known at P from the stresses through
an appropriate constitutive model. The strain rate i~) is obtained from these by tbeusual
coordinate transformation

(16)

where nR =D•eR and nz =n . ez.
The eqns (14) and (15) are linear equations which can be solved for the unknown stress rates

eTee and eT/JIJo This yields the stress rates eTlln, Ulle, uee and eTlJ6' The first three rates can be
transformed back to yield the stress rates eTRR' eTzz and eTRZ' Thus

(17)

(18)

(19)

FINITE ELEMENT AND DIRECT FORMULATIONS
The finite element formulation used to obtain the numerical results in this paper is that

discussed in Ref. [15]. It is a standard approach based on a rate form of the principle of virtual
work.



Axisymmetric viscoplastic deformation by the boundary element method 1119

It is possible to derive a direct solution for the much simpler class of problems of cylinders
of uniform circular cross-section in plane strain subjected to axisymmetric pressures. These
solutions are very useful for the evaluation of the accuracy of the BEM and FEM solutions.
Details of this direct method are available in many previous references (see, e.g. Refs. [16, 17]).

NUMERICAL IMPLEMENTATION OF BEM

The numerical implementation of the BEM equations and solution strategy are quite similar
to those used earlier for planar problems [1-4]. An important difference between axisymmetric
problems and the planar problems described in earlier references, however, is that the
axisymmetric kernels can no longer be integrated analytically over boundary elements or
internal cells. Thus, special methods are required for the accurate and efficient evaluation of
these singular integrals. Some of these methods are discussed in this section.

The first step, as usual, is to divide the boundary aB of an R - Z section of the cylinder
into N, boundary segments and the interior into n; internal cells. Denoting by u;(PM ) the
components of the displacement rates at a point P which coincides with node M, a discretized
version of eqn (12) can be written as (p, ~ not summed, j = 1 and 3)

cij(PM)u;(PM) = ~1 [Upj(PM, Q)fp(Q) + Ufj(PM, Qh(Q)
1t, ACN

- Tpj(PM, Q)up(Q) - Tfj(PM, Q)Uf(Q)]PQ dCQ

+2G I 1 (upj.P(PM, q)E~(q)+ Upj,f(PM, q)E~)(q)
fti ~A"

+ Ufj,p(PM, q)E~)(q) + Ufj.f(PM, q)EW(q)

+ Ue;(PM, q)E~(q»)pq dpq d~q. (20)
pq

The inclusion of C;j(PM ) means that boundary nodes can be placed at a corner. In the
numerical implementation used here, double nodes are placed at corners to allow for jumps in
tractions and normals across comers.

Suitable shape functions are now chosen for the variation of displacement and traction rates
along boundary elements and for the variation of nonelastic strain rates over internal cells. This
converts eqn (20) into an algebraic system of the type

[A]{u} +[B]{f} = {b} (21)

which, as before, must be solved for the unspecified components of the boundary rates of
displacements and tractions. Next the displacement rates and finally the stress rates are
obtained throughout the body and a march forward time integration scheme is used to obtain
the time-histories of the displacements, stresses and strains. The special methods needed for
the accurate evaluation of the various terms in eqn (20) and in eqn (13) (if it is used) are
discussed next.

Evaluation of integrals of Uij over singular boundary elements
When a source point PM lies inside or on the edge of a boundary element ACN in eqn (20),

this element is termed a singular element. The integrals of Uij and 1';j over such elements
require special care. The components of the kernel Uij (eqns 6-9) have a singularity of the type
In r when PM lies in ACN and r is the distance between PM and Q. In such cases, it is fruitful to
use the transformation r = e2 which changes In r dr to 4e In e de, which is re~ular as e -+ 0[18].
Regular Gaussian integration is performed after this transformation is carried out.

Evaluation of the tensor Cij and integrals of Tij

The kernel 1';j has a singularity of the type 1/r on a singular element. The singular intergals
of 1';j and the tensor Cij are best determined indirectly by the use of rigid body translation [19]
and elastic inflation modes.

Rigid body translation in the Z direction. The elastic problem is considered here. If a rigid
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body translation Uz::: I is applied to every point of the axisymmetric body, no stresses or
tractions are generated in it. In this case, eqn (12) becomes (j::: I and 3)

If aBc is the part of aB which contains Pand a13 is the rest,

(22)

where the I.h.s. of eqn (22) is obtained by numerical evaluation (Gaussian integration) of the
nonsingular term on the right.

Inflation mode in the R direction. The displacement field UR =R is a possible solution of the
Navier equations for the axisymmetric elasticity problem. This gives the tractions

at a point P on the boundary aBo If this solution is imposed, eqn (12) becomes

which can be written as (j =1and 3, no sum on p or ~)

clj(P)Rp+ ( Tpj(P, Q)pQ2 dCQ = ( [2 Upj(P, Q)(A +G)np(Q)
JaBe JaB

+2Ufj(P, Q)An{(Q)]PQ dCQ

- ( . Tpj(P, Q)pQ2 dCQ. (24)
JaB

Once again, the I.h.s. of eqn (24) is obtained by numerical evaluation (Gaussian integration) of
the right. The length of a boundary element on which P varies must be small for this method to
be useful.

Evaluation 01 area integral
Terms like Uppp in eqn (20) or (5) are singular when the source point lies inside or on an

internal cell over which the integral is being evaluated. In such a situation, UpjoP has a l/rpq
singularity. The following transformation is useful for the evaluation of the area integral in such
cases.

Referring to Fig. 2, let f(R, Z; p,~) denote a term like Upj.i<;,!. The integral to be evaluated
over a triangular internal cell is

I::: LI(R, Z;p, ~)dA:::LI(R, Z; p, Os ds dq,.

The coordinates (p,~) of the field point q are transformed to local polar coordinates (s, q,). If p
coincides with 0,1 is singular with a singularity l/s. Otherwise, 1 is regular, so that PI::: sl is
always regular. Writing I in terms of FI

I:::LFI(s, q,)ds dq,

(where R, Z is suppressed since the coordinates of the source point are fixed).
First {j = q, - a is used to change the integral into
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b

a

6Lh~
p.e p.e

Fig. 2. Notation used for the evaluation of area integrals.
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The following transformation is now used to transform the triangular cell into a unit square

Using the Jacobian of the transformation,

This transformed integral is evaluated by Gaussian quadrature. For the singular cases where
the source points do not lie on the vertex of a triangle, the triangle can be broken up into
smaller triangles as shown in Fig. 2.

The area integral in eqn (13), if it is used, can be evaluated in a similar fashion.
It is important to make sure that the integration of singular kernels over triangular internal cells

is sufficiently accurate. A check which has proved useful is the numerical evaluation of both sides
of the equation

1rr '(11) d Jrr '(11) dAr Ujj€jk nk C:;:;: A Uji,kE;t

where r is any closed curve enclosing the area A and E~l is divergence free. A simple choice of
e~l is e<;lt:;:;: 1, i;i:;:;: 1, i!zl:;:;: - 2, e<;l:;:;: o.

NUMERICAL RESULT5-COMPARISON OF VARIOUS SOLUTIONS

Constitutive model and material parameters
A combined creep-plasticity constitutive model with state variables, that due to Hart [20], is

used to describe material behavior. This model has been used many times previously by
Mukherjee and his coworkers (see, e.g. Refs. [1-5,15]. Numerical results are given in this
section for 304 stainless steel at 400°C. The values of the material parameters used are the same
as those given in the plate bending application[5] except that .M:;:;: 0.133 x 1(f psi and Eo:;:;:
3.15 sec-I. The initial values of the state variables q* and EVl , of the model, are taken as 17ksi
and zero, respectively.
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BEM, FEM and mixed methods
The details of the various numerical methods used to get the results reported in this section

afe given below.
BEM (also called pure BEM). This method uses a piecewise linear description of

displacements, tractions and their rates on straight boundary elements. As mentioned before,
double nodes are used at corners to allow for jumps in tractions and their rates. The nonelastic
strain rates are assumed to be piecewise linear on the boundary elements as well as on
triangular internal cells. For the internal cells, the sampling points are placed at vertices of the
triangles. The stress rates are obtained pointwise inside the body from eqn (13) and this requires
the evaluation of gradients of nonelastic strain rates at points inside internal cells. Thus, some
form of interpolation of these strain rates over internal cells is necessary. The boundary stress
rates are obtained from the boundary stress rate algorithm described earlier.

All integrations of kernels are performed numerically. Six or twenty Gauss points are used
on the boundary elements. Area integrals are evaluated by the strategy outlined in section
"Evaluation of Area Integral" with a 3 x 3 grid Gauss points.

Mixed l • In this case, the displacements and displacement rates throughout the body are
obtained by the same approach as described above for the pure BEM method. The stresses and
stress rates inside and on the boundary of the body, however, are obtained from a piecewise
quadratic interpolation of displacements and displacement rates over triangular internal cells.
The displacement rates are sampled at six points-the vertices and the mid-points of the sides
of the triangular cells. There is no longer a need to interpolate nonelastic strain rates over
boundary elements. Discretization of nonelastic strain rates over internal cells is carried out as
for the pure BEM case. This is not strictly necessary here since nonelastic strain rate gradients
need not be computed in this algorithm. However, in view of the strategy used for area
integration, elimination of an interpolation scheme would require direct evaluation of nonelastic
strain rates at many Gauss points for each internal cell. Thus, interpolation appears necessary
as an economy measure. The boundary stress rate algorithm is not used here. Integration of
kernels, required for the evaluation of displacements and their rates, are performed as in the
previous case.

Mixed2• This is virtually the same method as Mixed) with one important difference. Once
the stress rates are obtained in B and on aB at a given time, the boundary stress rate algorithm
is used to recalculate the stress rates at points on aB and these values then replace the
previously calculated ones. The main idea behind Mixed2 is to smooth out jumps in stresses and
stress rates at the boundary nodes. This is done by central differences to obtain tangential
derivatives of displacement rates.

FEM. This is the same program as discussed before [4, 15]. A piecewise quadratic inter­
polation of displacements and their rates are used on axisymmetric finite elements with
triangular crosNections. There is no need for shape functions for the nonelastic strain rates.
Instead, these quantities are calculated directly at each time, from the constitutive model, at 7
Gauss points which lie inside a triangular element.

Elastic-solutions
Elastic solutions for the stresses in a uniform thick cylinder, in plane strain, subjected to an

internal pressure of 10 ksi, have been obtained by various methods. The results, for bla = 1.5
('a' and 'b' are the inside and outside radii of the cylinder) are shown in Table 1. The FEM
mesh used here is shown in Fig. 3. The dots on the same figure are the locations of the
boundary nodes for the case B. Nodes = 32. The finer BEM mesh has 20 more boundary nodes

,oi~
Lv--1.0---l
t--- 1.5 ----.--- ...- -- "'---1
I

Fig. 3. BEM and FEM mesh for uniform cylinder under internal pressure. BEM: 32 boundary nodes, 28 internal
cells. FEM: 73 nodes, 28 elements.
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Table I. Elastic solutions at internal points for the Lame Problem with Pi =10 ksi (Stresses in psi)

Ria Direct FEM BEH BEK
(Lame) (28 elements) B.Nodes • 52 B.Nodes • 32

1.025 oRR - 9133 - 9138 - 9132 - 9125

°ee 25133 25100 25158 25232

1.075 ORR - 7576 - 7574 - 7576 - 7576

Gee 23576 23547 23598 23664

1.125 ORR - 6222 - 6205 - 6224 - 6229

Gee 22222 22202 22242 22302

1.175 ORR - 5038 - 5007 - 5040 - 5047

Gee 21038 21028 21056 21111

1.25 ORR - 3520 - 3508 - 3523 - 3530

Gee 19520 19505 19537 19586

1.35 ORR - 1877 - 1873 - 1879 - 1886

Gee 17877 17861 17891 17935

1.45 ORR - 561 - 562 - 563 - 570

°ee 16561 16546 16574 16613

placed on the faces Z = constant between the boundary nodes on Fig. 3. The BEM for this elastic
problem does not require internal discretization.

All the results are seen to be very accurate (maximum deviation from the analytical
solution is about 1/2%), with fine mesh HEM delivering practically the exact solution.

Initial rates for the viscoplastic problem
The viscoplastic problem requires step-wise time integration over many times steps in order

to obtain the time histories of the quantities of interest. This process is expensive. Thus, it is a
very good idea to compare the initial rates of displacements and stresses, as obtained from
various methods, for the case of a suddenly applied load. This has been done for the uniform
cylinder described above and the results are tabulated in Tables 2 and 3. The discretizations
used for the FEM and BEM (with 32 boundary nodes) is shown in Fig. 3. The case of BEM
with B. Nodes =52 has the same distribution of internal cells.

The FEM gives the most accurate overall rates in this comparison. As expected, the finer
BEM is better than the coarser one. It is felt that there are two main reasons for the difference
between the BEM and FEMresults. The first is that the BEM uses a piecewise linear
representation of displacement rates on the boundary while the FEM has quadratic displace­
ment rate shape functions throughout the body. The second is that the BEM has a piecewise
linear representation of nonelastic strain rates over internal cells while the FEM calculates
these quantities exactly at Gauss points. In fact, this alone can caUse an error of as much as 7%
in a nonelastic strain rate component at a point inside an internal cell. It is expected that a

Table 2. Initial radial displacement rates (in.lsec) at internal points in an uniform cylinder for p;(O) = 10 ksi

Ria Direct FEM BEH BEK
(28 elements) (8.Nodes • 52) (8.Nodes • 32)

1.025 4469 4433 4666 4830

1.075 4078 4071 4289 4434

1.125 3883 3845 4053 4190

1.175 3725 3689 3889 4021

1. 25 3556 3522 3711 3837

1.35 3395 3362 3542 3662

1.45 3273 3242 3415 3530

SS Vol. 18. No. 12-F
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Table 3. Initial stress rates (psi/sec) for same case as in Table 2

R Direct FEM BEM BEM
B.Nodes = 52 B.Nodes • 32

1.025 "RR -.8418 K 1010 - .1062 K lOll -.9137 K 1010 -.9587 K 1010

"ee -.2638 K 1012 -.2633 x 1012 -.2619 K 1012 -.2642 K 1012

"ZZ -.3996 J< lOll -.4084 x lOll -.4199 x lOll -.4249 x 1011

1.075 "RR - .1551 K lOll _ .1639 K 1011 -.1745 K lOll - .1890 K lOll

"ee -.8547 K 1011 -.8543 x 1011 -.8304 K lOll -.8323 x 1011

oZZ -.8297 x 10
10 -.8757 x 1010 -.8550 K 1010 -.8988 x 1010

1.125 ORR - .1656 K lOll -.1684 x lOll -.1800 x lOll -.1948 x lOll

"ee -.4850 x 1010 -.4990 x 10
10 -.1996 K 1010 -.1025 x 1010

,\Z .5543 x 1010 .5304 x 10
10 .5959 x 1010 .5881 x 1010

1.175 ORR _ .1516 x 1011 -.1513 x lOll -.1623 x lOll -.1746 x lOll

Gee .3208 x 1011 .3183 x 1011 .3508 x 1011 .3558 x 1011

°ZZ .1177 x 1011 .1167 x 1011 .1247 x 1011 .1267 x 1011

1.25 aRR - .1155 x lOll -.1170 x lOll - .1262 x lOll - .1346 x lOll

aee .5324 x lOll .5260 x lOll .5597 x lOll .5796 x lOll

azz .1545 x 1011 .1518 x lOll .1593 x lOll .1634 x lOll

1.35 ORR -.6458 x lOll -.6469 x 10
10 -.6910 x 10

10 -.7387 x 1010

aee .5901 x lOll .5840 x 1011 .6170 x lOll .6377 x 1011

aZZ .1683 x lOll .1664 x 1011 .1753 x lOll .1804 x 1011

1.45 aRR -.1970 x 1010 -.1992 x 1010 -.2110 x 10
10 -.2317 x 1010

aee .5776 x lOll .5718 x lOll .6030 x lOll .6230 x 1011

a ZZ .1716 x lOll .1697 x lOll .1788 x lOll .1842 x lOll

higher order interpolation of nonelastic strain rates on internal cells would give rise to a more
accurate BEM solution.

Time histories of displacements and stresses for the viscoplastic problem
Time histories of displacements for various cases, obtained from different methOds, are

shown in Figs. 4-6 and 9. The results for axial loading of a uniform cylinder, for increasing and
constant loads, respectively, are shown in Figs. 4 and 5. The results from the direct and FEM

0.0220.018

r DIRECT
BEM
FEM

c./r ··- 2.O

32.0

28.0 -

24.0

~ 20.0
-'£

.,
16.0

~~
.,.,
!f, 12.0 "22

(ksi)

8.0
0.0 1.0

40
t(sec)

0.0
0.002 0006 0.01 0.014

Axial Slrain

Fig. 4. Results for axial loading of a uniform circular cylinder increasing at a constant rate-comparisoD of
various solutions. BEM: 8 boundary nodes, 4 internal cells. FEM: 12 nodes, 4 elements. uiz =20 ksi/sec.
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:i 0004
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(ks,)
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Fig. 5. Same situation as Fig. 4 but with constant remote axial load. U21 =20 ksi.

16.0r
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DIRECT l
FEM

MIXEDI '

MIXED2
~BEM

fli::
0.0 10

I(sec)

00 L.::-='::-::--'--::-::':-::~---=-:::-~--::-:-:-:-~~c:-~:-:'
0002 0.006 001 0014 O.OIS 0.022

Internal Circumferential StrOln

Fig. 6. Results for internal pressure on a uniform circular cylinder increasing at aconstant rate~omparison of
various solutions. p= 10 ksi/sec. BEM and FEM mesh shown in Fig. 3.

calculations coincide in both cases for these simple problems, while the BEM results are very
accurate. The Mixed2 approach does relatively poorly for the creep problem in Fig. 5.

Comparisons for the case of a uniform cylinder subjected to increasing pressure (Fig. 6) are
very interesting. The discretizations used for the various methods are shown in Fig. 3 with the
pure BEM and mixed methods using 32 boundary nodes. Once again, the FEM comes out best.
As mentioned before, the BEM errors can probably be attributed to the boundary discretization
used for the displacement rates and the internal discretization for the nonelastic strain rates.
Errors from the piecewise linear boundary representation of displacement rates are aggravated
in the BEM and Mixed2 cases which use the boundary stress algorithm, and therefore require
numerical differentiation of displacement rates on the boundary aB. The Mixed t method, which
does not use boundary stress rates, is more accurate than BEM and Mixed2• In any case, the
maximum BEM error is around 7% at a simulated strain in excess of 2%. This calculation requires
several hundred time steps and the BEM results are considered quite satisfactory for a first
attempt at this problem with very complicated kernels.

The redistribution of stresses for the same problem, obtained from the BEM algorithm, are
shown in Fig. 7. The results show the expected transition from an elastic to an elastic-plastic
and finally a plastic stress distribution. The crosses in this figure refer to internal points and the
circles to boundary points. The boundary stresses, especially at the inner radius, become
progressively less accurate with time. This is attributed to the errors from the boundary stress
algorithm as mentioned above. It should be realized that errors in boundary stress rates affects
boundary stresses, which, in turn, cause inaccuracies in stress rates and stresses throughout the
cylinder as integration proceeds in time.

Sample results for an example of a nonuniform cylinder in plane strain are shown in Fig. 9,
with the corresponding mesh shown in Fig. 8. This is representative of a portion of the core of a
Gas Cooled Fast Breeder Reactor Tube (GCFR)[15]. The loading is increasing internal
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Fig. 7. Redistribution of stresses for the loading and geometry of Fig. 6. BEM solution.
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Fig. 8. BEM and FEM mesh for GCFR problem. BEM: 36 boundary nodes, 25 internal cells. FEM: 66 nodes, 25
elements.

Fig. 9. Results for GCFR tube under increasing internal pressure-comparison of BEM and FEM solutions.
Ii = 10 ksi/sec. BEM and FEM mesh shown in Fig. 8.

pressure. The results for pressure as functions of inside circumferential strain compare well
from the BEM and FEM programs. A direct solution is, of course not possible for this case.

The pure BEM has the advantage of calculating stresses and stress rates pointwise inside
the body. Thus, there are no jumps in these quantities across interelement boundaries. The
FEM allows such jumps across elements. The Mixed methods, as implemented here, have
internal source points on the boundaries of triangular cells, in order to interpolate, rather than
extrapolate, the nonelastic strain rates. This leads to large jumps in stress rates at these internal
source points. These rates are directly used (without averaging) in the solution algorithm and
the jumps in the rates considerably slow down the stepwise time-integration process as
discussed in the next paragraph. Use of source points inside the internal cells would probably
improve the performance of the Mixed) and Mixedz algorithms.

Computer times
The c.p.u. times on an IBM 370/168 computer, for the various calculations, are given in

Table 4. The BEM program mns faster for all the problems. The mixed method is slow because
of large jumps in stress rates at the internal nodes and due to an older inefficient algorithm for
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Table 4. Computational Time Comparison. Note: E = Elastic Time, T=Tolal Time. -Time with
NGAUSS = 10 instead of 20 for boundary integration

* *BEM MIXED I l1IXED
2

FEI1

I. Uniaxial Tension

Boundary Nodes 8 8 8

Internal Nodes 1 5 13

Elements 4 4 4 4

a) Extension

** 0.112

('
0.727 0.855 0.857

C.P.U. time
(secs)

T 4.783 23.602 12.536 7.718

b) Creep
**

{'
0.728 0.88 0.867 0.121

C.P.U. time
(secs)

T 11.654 61. 807 36.876 29.172

2. Internal Pressure

Boundary Nodes 32 28 28

Internal Nodes 41 41 73

Elements 28 28 28 28
***

{'
7.709 22.972 23.070 0.83

C.P.U. time
(secs)

T 42.495 674.457 614.181 75.046

3. GCFIl tube

Boundary Nodes 36 66

Internal Nodes • 6 66

Elements 25 25

{'
8.675*** 0.41\8

C.P.U. ti_
(secs)

T 38.660 44.288

*Time••re with 20 Cau•• points for the elastic solution and an older inefficient
algorithm for the domain integral

**Ela.tic Time with 20 Causs points.

***Elastic Time with 6 Causa points.

The mixed times have not been
modified becau.e they were con­
siderably larger than for the pure
BEM even for the same numbe. of
Causs points and similar vol~me
integral algorithm.

evaluating the domain integral. However the Mixed method was considerably slower than the
pure BEM even under similar conditions.

Summary and conclusions
The primary conclusions that are derived from this research are as follows:
(a) The boundary element method has been used to obtain solutions to this difficult class of

nonlinear problems. The numerical implementation of the method needs special care for the
evaluation of singular integrals and for the accurate determination of stresses and stress rates.

(b) The FEM, BEM and Mixed methods have been compared with a direct solution for a set
of problems for uniform cylinders. For the same mesh, the BEM, with piecewise linear shape
functions on the boundary, is somewhat less accurate than the FEM which uses piecewise
quadratic shape functions. The present BEM program runs faster than the FEM. It is expected
that the Mixed times per time-step can be greatly improved by using the more efficient
computational strategy used in pure OEM.

(c) This experience in the accurate numerical evaluation of singular integrals and stresses
should prove to be very valuable in further applications of the BEM to problems where
analytical integration of kernels is impossible or impractical.
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Future directions
It should be emphasized that this is a first HEM attempt at solving this complicated class of

problems and the implementation of the HEM can, no doubt, be greatly improved. Possible
directions that can be followed are given below.

For the pure HEM:
(a) Use of higher order shape functions for the boundary displacement rates. A related idea

is to retain, say, a piecewise linear boundary representation of displacement rates but to use a
higher order boundary interpolation function after the displacement rates have been obtained at
the boundary collocation points. This approach does not require too much additional effort but
should improve the numerically calculated values of tangential derivatives of displacement
rates considerably.

(b) Use of higher order interpolation functions for nonelastic strain rates over internal cells.
This appears essential if the HEM accuracy is to be made comparable to FEM calculations.

For the Mixed methods:
The best, but possibly expensive, suggestion here is to drop the piecewise description on

nonelastic strain rates over internal cells completely. Instead, the nonelastic strain rates should
be evaluated at internal Gauss points directly from the constitutive model, as is done in the
FEM program.
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